In cryptography, X.509 is an ITU-T standard for a public key infrastructure (PKI) for single sign-on (SSO) and Privilege Management Infrastructure (PMI). X.509 specifies, amongst other things, standard formats for public key certificates, certificate revocation lists, attribute certificates, and a certification path validation algorithm.
[edit]History and usageX.509 was initially issued on July 3, 1988 and was begun in association with the X.500 standard. It assumes a strict hierarchical system of certificate authorities (CAs) for issuing the certificates. This contrasts with web of trust models, like PGP, where anyone (not just special CAs) may sign and thus attest to the validity of others' key certificates. Version 3 of X.509 includes the flexibility to support other topologies like bridges and meshes (RFC 4158). It can be used in a peer-to-peer, OpenPGP-likeweb of trust[citation needed], but was rarely used that way as of 2004. The X.500 system has only ever been implemented by sovereign nations for state identity information sharing treaty fulfillment purposes, and the IETF's Public-Key Infrastructure (X.509), orPKIX, working group has adapted the standard to the more flexible organization of the Internet. In fact, the term X.509 certificate usually refers to the IETF's PKIX Certificate and CRL Profile of the X.509 v3 certificate standard, as specified in RFC 5280, commonly referred to as PKIX for Public Key Infrastructure (X.509). [edit]CertificatesIn the X.509 system, a certification authority issues a certificate binding a public key to a particular distinguished name in the X.500 tradition, or to an alternative name such as an e-mail address or a DNS-entry. An organization's trusted root certificates can be distributed to all employees so that they can use the company PKI system. Browsers such as Internet Explorer, Netscape/Mozilla, Opera, Safari and Chrome come with root certificates pre-installed, soSSL certificates from larger vendors will work instantly; in effect the browsers' developers determine which CAs are trusted third parties for the browsers' users. X.509 also includes standards for certificate revocation list (CRL) implementations, an often neglected aspect of PKI systems. The IETF-approved way of checking a certificate's validity is the Online Certificate Status Protocol (OCSP). Firefox 3 enables OCSP checking by default along with versions of Windows including Vista and later. [edit]Structure of a certificateThe structure foreseen by the standards is expressed in a formal language, namely Abstract Syntax Notation One. The structure of an X.509 v3 digital certificate is as follows:
Each extension has its own id, expressed as Object identifier, a set of values and either critical or non-critical indication. A certificate-using system MUST reject the certificate if it encounters a critical extension it does not recognize or a critical extension that contains information that it cannot process. A non-critical extension MAY be ignored if it is not recognized, but MUST be processed if it is recognized. The structure of Version 1 is given in RFC 1422. ITU-T introduced issuer and subject unique identifiers in version 2 to permit the reuse of issuer or subject name after some time. An example of reuse will be when a CA goes bankrupt and its name is deleted from the country's public list, after some time another CA with the same name may register itself although it is unrelated with the first one. However, IETF recommends that no issuer and subject names may be reused. Therefore, version 2 is not widely used in the Internet. Extensions were introduced in version 3. CA can utilize extensions to issue a certificate only for a specific usage (e.g., only for signing digital object). Each extension can be critical or non-critical. If an extension is critical and the system processing the certificate does not recognize the extension or cannot process it, the system MUST reject the entire certificate. A non-critical extension, on the other hand, can be ignored while the system processes the rest of the certificate. In all versions, the serial number MUST be unique for each certificate issued by a specific CA (as mentioned in RFC 2459). [edit]Extensions informing a specific usage of a certificate
As mentioned in RFC 5280, if key usage and extended key usage extensions are both present, both MUST be processed and the certificate can only be utilized if both extensions are coherent in specifying the usage of a certificate. For example, NSSuses both extensions to specify certificate usage.[1] [edit]Certificate filename extensionsCommon filename extensions for X.509 certificates are:
PKCS#7 is a standard for signing or encrypting (officially called "enveloping") data. Since the certificate is needed to verify signed data, it is possible to include them in the SignedData structure. A .P7C file is a degenerated SignedData structure, without any data to sign. PKCS#12 evolved from the personal information exchange (PFX) standard and is used to exchange public and private objects in a single file. [edit]Sample X.509 certificatesThis is an example of a decoded X.509 certificate for www.freesoft.org, generated with OpenSSL—the actual certificate is about 1 kB in size. It was issued by Thawte (since acquired by VeriSign), as stated in the Issuer field. Its subject contains many personal details, but the most important part is usually the common name (CN), as this is the part that must match the host being authenticated. Also included is an RSA public key (modulus and public exponent), followed by the signature, computed by taking a MD5 hash of the first part of the certificate and signing it (applying the encryption operation) using Thawte's RSA private key. Certificate: Data: Version: 1 (0x0) Serial Number: 7829 (0x1e95) Signature Algorithm: md5WithRSAEncryption Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc, OU=Certification Services Division, CN=Thawte Server CA/emailAddress=server-certs@thawte.com Validity Not Before: Jul 9 16:04:02 1998 GMT Not After : Jul 9 16:04:02 1999 GMT Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala, OU=FreeSoft, CN=www.freesoft.org/emailAddress=baccala@freesoft.org Subject Public Key Info: Public Key Algorithm: rsaEncryption RSA Public Key: (1024 bit) Modulus (1024 bit): 00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb: 33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1: 66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66: 70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17: 16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b: c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77: 8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3: d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8: e8:35:1c:9e:27:52:7e:41:8f Exponent: 65537 (0x10001) Signature Algorithm: md5WithRSAEncryption 93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d: 92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f:92: ab:2f:4b:cf:0a:13:90:ee:2c:0e:43:03:be:f6:ea:8e:9c:67: d0:a2:40:03:f7:ef:6a:15:09:79:a9:46:ed:b7:16:1b:41:72: 0d:19:aa:ad:dd:9a:df:ab:97:50:65:f5:5e:85:a6:ef:19:d1: 5a:de:9d:ea:63:cd:cb:cc:6d:5d:01:85:b5:6d:c8:f3:d9:f7: 8f:0e:fc:ba:1f:34:e9:96:6e:6c:cf:f2:ef:9b:bf:de:b5:22: 68:9f To validate this certificate, one needs a second certificate that matches the Issuer (Thawte Server CA) of the first certificate. First, one verifies that the second certificate is of a CA kind; that is, that it can be used to issue other certificates. This is done by inspecting a value of the CA attribute in the X509v3 extension section. Then the RSA public key from the CA certificate is used to decode the signature on the first certificate to obtain a MD5 hash, which must match an actual MD5 hash computed over the rest of the certificate. An example CA certificate follows: Certificate: Data: Version: 3 (0x2) Serial Number: 1 (0x1) Signature Algorithm: md5WithRSAEncryption Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc, OU=Certification Services Division, CN=Thawte Server CA/emailAddress=server-certs@thawte.com Validity Not Before: Aug 1 00:00:00 1996 GMT Not After : Dec 31 23:59:59 2020 GMT Subject: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc, OU=Certification Services Division, CN=Thawte Server CA/emailAddress=server-certs@thawte.com Subject Public Key Info: Public Key Algorithm: rsaEncryption RSA Public Key: (1024 bit) Modulus (1024 bit): 00:d3:a4:50:6e:c8:ff:56:6b:e6:cf:5d:b6:ea:0c: 68:75:47:a2:aa:c2:da:84:25:fc:a8:f4:47:51:da: 85:b5:20:74:94:86:1e:0f:75:c9:e9:08:61:f5:06: 6d:30:6e:15:19:02:e9:52:c0:62:db:4d:99:9e:e2: 6a:0c:44:38:cd:fe:be:e3:64:09:70:c5:fe:b1:6b: 29:b6:2f:49:c8:3b:d4:27:04:25:10:97:2f:e7:90: 6d:c0:28:42:99:d7:4c:43:de:c3:f5:21:6d:54:9f: 5d:c3:58:e1:c0:e4:d9:5b:b0:b8:dc:b4:7b:df:36: 3a:c2:b5:66:22:12:d6:87:0d Exponent: 65537 (0x10001) X509v3 extensions: X509v3 Basic Constraints: critical CA:TRUE Signature Algorithm: md5WithRSAEncryption 07:fa:4c:69:5c:fb:95:cc:46:ee:85:83:4d:21:30:8e:ca:d9: a8:6f:49:1a:e6:da:51:e3:60:70:6c:84:61:11:a1:1a:c8:48: 3e:59:43:7d:4f:95:3d:a1:8b:b7:0b:62:98:7a:75:8a:dd:88: 4e:4e:9e:40:db:a8:cc:32:74:b9:6f:0d:c6:e3:b3:44:0b:d9: 8a:6f:9a:29:9b:99:18:28:3b:d1:e3:40:28:9a:5a:3c:d5:b5: e7:20:1b:8b:ca:a4:ab:8d:e9:51:d9:e2:4c:2c:59:a9:da:b9: b2:75:1b:f6:42:f2:ef:c7:f2:18:f9:89:bc:a3:ff:8a:23:2e: 70:47 This is an example of a self-signed certificate, as the issuer and subject are the same. There's no way to verify this certificate except by checking it against itself; instead, these top-level certificates are manually stored by web browsers. Thawte is one of the root certificate authorities recognized by both Microsoft and Netscape. This certificate comes with the web browser and is trusted by default. As a long-lived, globally trusted certificate that can sign anything (as there are no constraints in the X509v3 Basic Constraints section), its matching private key has to be closely guarded. [edit]SecurityThere are a number of publications about PKI problems by Bruce Schneier, Peter Gutmann and other security experts.[2][3][4] [edit]Specification: Complexity and lack of qualityThe X.509 standard was primarily designed to support the X.500 structure, but today's use cases center around the web. Many features are of little or no relevance today. The X.509 specification suffers from being over-functional and underspecified and the normative information is spread across many documents from different standardization bodies. Several profiles were developed to solve this, but these introduce interoperability issues and did not fix the problem. [edit]Architectural flaws
[edit]Problems of Commercial Certificate Authorities
[edit]Implementation issuesImplementation suffer from design flaws, bugs, different interpretations of standards and lack of interoperability of different standards. Some problems are:
[edit]Exploits
[edit]PKI standards for X.509
[edit]Certification authorityMain article: Certificate authority A certification authority (CA) is an entity which issues digital certificates for use by other parties. It is an example of a trusted third party. CAs are characteristic of many public key infrastructure (PKI) schemes. There are many commercial CAs that charge for their services. Institutions and governments may have their own CAs, and there are free CAs. [edit]Public-Key Infrastructure (X.509) Working Group
The Public-Key Infrastructure (X.509) working group (PKIX) is a working group of the Internet Engineering Task Force dedicated to creating RFCs and other standard documentation on issues related to public key infrastructure based on X.509 certificates. PKIX was established in Autumn 1995 in conjunction with the National Institute of Standards and Technology.[9] |
Technology >